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A new method for computing the signal attenuation due to restricted diffusion in a linear magnetic field
gradient is proposed. A fast random walk (FRW) algorithm for simulating random trajectories of diffusing
spin-bearing particles is combined with gradient encoding. As random moves of a FRW are continuously
adapted to local geometrical length scales, the method is efficient for simulating pulsed-gradient spin-
echo experiments in hierarchical or multiscale porous media such as concrete, sandstones, sedimentary
rocks and, potentially, brain or lungs.
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1. Introduction

Many biological and industrial processes involve molecular dif-
fusion in complex media: oxygen and nutrients transport in cells,
tissues and organs [1–6], chemical reactions on catalytic surfaces
[7–9], oil permeation in sedimentary rocks [10–12], setting of a
concrete [13,14], etc. Being the intrinsic transport mechanism, re-
stricted diffusion is an important source of information about the
confining geometry [15,16]. So, diffusion-weighted nuclear mag-
netic resonance (NMR) imaging is a broadly applied non-invasive
experimental technique for studying human organs (e.g., brain,
lungs, kidneys) and natural or artificial materials (e.g., sandstones,
sedimentary rocks, concrete) [17–22].

A standard pulsed-gradient spin-echo (PGSE) experiment starts
with a 90� radio-frequency (rf) pulse that flips the nuclear magne-
tization into the transverse plane [17]. In a spatially inhomoge-
neous magnetic field B(r), the nuclei precess with the Larmor
frequency cB(r), c being the nuclear gyromagnetic ratio (through-
out the text, vectors are written in bold). Since the precession is fas-
ter or slower depending on the spatial position r, the trajectory of a
spin-bearing particle is ‘‘encoded’’ by the applied magnetic field as

u ¼
Z t

0
dt0cBðrðt0ÞÞ; ð1Þ

where u is the random dephasing of the nucleus acquired along its
Brownian trajectory r(t0) up to an acquisition time t. The free induc-
ll rights reserved.

du
tion decay (FID) is then obtained by averaging the nuclear trans-
verse magnetization eiu over all Brownian trajectories r(t0) started
uniformly in a given domain X:

E
E0
¼ Efeiug; ð2Þ

where E0 is the reference signal (without applied magnetic field)
which may account for bulk relaxation. The signal attenuation E/E0

depends on physical parameters (applied magnetic field B(r), acqui-
sition time t, diffusion coefficient D, etc.) and the shape of the diffu-
sion-confining domain X. The spin-echo and other echo sequences
can be implemented by putting in Eq. (1) an effective temporal pro-
file of the applied magnetic field (see [16,23,24] for details).

An explicit dependence of the signal on physical parameters (e.g.,
acquisition time t) can be derived only for unrestricted diffusion in
the whole space. Among various numerical approaches which were
employed to calculate the signal in confining domains, we focus on
Monte Carlo techniques [25,26]. These techniques consist in simu-
lating a representative set of Brownian trajectories r(t0), calculating
the acquired dephasing u according to Eq. (1), and approximating
the expectation in Eq. (2) by a large but finite sum of simulated out-
comes. For relatively simple domains (e.g., slab, cylinder or sphere),
basic Monte Carlo simulations with a fixed-time step d can be used.
Each Brownian trajectory r(t0) is approximated by a sequence of t/d
independent normally distributed random jumps along each coor-
dinate, with mean zero and variance 2Dd [27–31]. Geometrical
restrictions are implemented through the appropriate boundary
condition. The integral in Eq. (1) is naturally approximated by a fi-
nite sum with the small time step d:
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u � d
Xt=d
k¼1

cBðrðkdÞÞ: ð3Þ
Although these fixed-time step simulations are easy to implement,
they are inefficient in hierarchical or multiscale porous media be-
cause the time step d must be chosen very small in order to make
the average one-step displacement

ffiffiffiffiffiffiffiffiffi
2Dd
p

much smaller than the
smallest geometrical feature of the domain, while most particles
are released inside large pores. As a consequence, a very large num-
ber of steps (t/d) may be required for simulating each trajectory.
This is the major drawback of basic Monte Carlo schemes.

Leibig suggested to use fast random walks (FRWs), or so-called
variable-time step simulations, to overcome this problem in the
special case of surface relaxation (without gradients) [32]. In FRWs,
the length and time of each random jump of a particle are adapted
to the local geometrical structure surrounding the particle, in order
to explore the confining domain as fast as possible (Fig. 1). Inside
small pores, the particle moves by tiny jumps, which become much
larger when the particle enters large pores. Making the time step d
adaptable, one removes the major drawback of basic Monte Carlo
techniques. On the contrary, the computation of the dephasing u
in Eq. (1) for gradient encoding, which was elementary for basic
Monte Carlo simulations with a fixed-time step, now becomes a
challenging problem. In fact, an approximate integration in Eq.
(3) fails for variable (and potentially large) time steps.

In this paper, we provide a mathematical solution to this prob-
lem which allows one to profit the computational advantages of
FRWs in simulating PGSE signals. This novel variable-time step
technique can be implemented to calculate the signal attenuation
in a wide range of model and realistic porous media, in which
the largest and smallest pore sizes differ by orders of magnitude.
Examples range from random packs of spheres or self-similar frac-
tals, to multiscale porous media such as concrete, sandstones, sed-
imentary rocks and, potentially, brain or lungs.

The paper is organized as follows. In the next section, we de-
scribe the fast random walk algorithm and explain the implemen-
tation of the gradient encoding. Section 3 is devoted to comments,
numerical checks, further extensions and improvements. Appendi-
ces describe the mathematical ground for the derivation of the
r0
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Fig. 1. A fast random walk in a medium X with obstacles (dark disks). From an
initial position r0, one determines the distance ‘0 to the obstacles (or to the
boundary of the domain) and draws a circle of radius ‘0 centered at r0. A ‘‘jump’’ to a
randomly (uniformly) chosen point on the circle is then executed. This single large
displacement (shown by an arrow) replaces a detailed simulation of Brownian
trajectory inside the disk of radius ‘0. From the new point r1, one determines the
distance again and executes the next jump, and so on (only three jumps are shown).
main results of the paper. Since the analytical results are provided
self-consistently in the main text, practical ‘‘users’’ of the algorithm
may skip the technical details in Appendices. However, the pre-
sented mathematical derivation is essential for understanding
the employed approximations and for further extensions of the
algorithm, e.g., to semi-permeable structures.
2. Fast random walk algorithm

The concept of fast random walks was proposed by Muller [33]
in 1956 and then broadly employed by many authors, for instance,
to study diffusion–reaction processes and related first-passage
problems in random packs of spheres [34,35] or near prefractal
boundaries [36–38]. The idea consists in replacing Brownian mo-
tion by an equivalent ‘‘spherical process’’ that explores the confin-
ing domain as fast as possible. To illustrate the idea, we consider a
particle which starts to diffuse from an initial position r0 (Fig. 1).
Let us draw the largest disk (or ball in three dimensions) which
is centered at r0 and inscribed in the confining medium. Its radius
‘0 is the distance between r0 and the boundary. After wandering in-
side the disk during a random time s1, the particle exits the disk at
random point r1. Since there was no ‘‘obstacles’’ inside the disk, all
the exit points of the disk are equally accessible for isotropic
Brownian motion so that the exit point r1 has a uniform distribu-
tion on the circle of radius ‘0. From r1, the new largest disk of ra-
dius ‘1 is inscribed in the confining domain. After wandering
inside the disk during a random time s2, the particle exits at ran-
dom point r2, and so on. Following the Brownian trajectory of the
particle, one can construct the sequence of inscribed disks (i.e.,
their centers rn and radii ‘n) and the associated exit times sn.

The fundamental idea behind FRWs is that the sequence
{rn,‘n,sn} can be constructed directly, without simulating the
underlying Brownian trajectory at all. At each step, one determines
the distance ‘n between the current position rn and the boundary of
the confining domain and chooses the next position rn+1 randomly
and uniformly on the circle of radius ‘n. The time sn+1 needed to exit
from the disk (i.e., to jump from rn to rn+1) is a random variable
which can be easily generated from the well-known probability dis-
tribution (Section 2.1). A detailed time-consuming simulation of a
Brownian trajectory with high spatial resolution is therefore re-
placed by generation of random jumps which are adapted to the lo-
cal geometrical structure of the domain. In other words, the spatial
resolution of the new simulated process is constantly adapted to
the distance to the boundary: closer the particle to the boundary,
finer the simulation scale. Performing each jump at largest possible
distance yields a tremendous gain in computational time.

2.1. Generation of exit times

The time s needed for Brownian motion to exit from a domain is
a random variable. Its probability distribution, S0ðtÞ � Pfs > tg,
which is also known as the survival probability (i.e., the probability
for a particle to survive or to remain inside the domain up to time
t), admits a spectral representation [cf. Eq. (B.1)]. For the unit disk
and the unit sphere with absorbing (Dirichlet) boundary condition,
the Laplacian eigenfunctions and eigenvalues are given in Appen-
dix by Eqs. (A.15) and (A.19), from which one retrieves the classical
formulas for the survival probability for Brownian motion started
from the origin:

S0ðtÞ ¼ 2
X1
k¼0

1
a0kJ1ða0kÞ

e�a2
0k

t ðd ¼ 2Þ; ð4Þ

S0ðtÞ ¼ 2
X1
k¼0

ð�1Þke�a2
0k

t ðd ¼ 3Þ; ð5Þ
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with the dimensionless time t, and {ank} is the set of all positive
zeros (indexed by k = 0,1,2, . . .) of

� Bessel function Jn(z) of the first kind (d = 2), or
� spherical Bessel functions jn(z) of the first kind (d = 3).

The survival probability monotonously decreases from 1 at t = 0 to 0
as t goes to infinity (Fig. 2a). In the short-time limit, the exit prob-
ability 1 � S0(t) is extremely small,

1� S0ðtÞ ’
2e�1=ð4tÞð1� t þ 4t2 þ Oðt3ÞÞ ðd ¼ 2Þ;
2e�1=ð4tÞ 1ffiffiffiffi

pt
p ðd ¼ 3Þ;

(
ð6Þ

because very few particles can cross the distance from the origin to
the boundary during a short time. In turn, for large t, the survival
probability decays exponentially,

S0ðtÞ ’
2

a00 J1ða00Þ
e�a2

00t ðd ¼ 2Þ;

2e�a2
00t ðd ¼ 3Þ;

(
ð7Þ

since it is unlikely for diffusing particles to avoid the encounter with
the boundary during a long time.

Fig. 2b shows the probability density, � dS0ðtÞ
dt , of the exit time.

This figure and the above asymptotic behaviors clearly indicate
that the (normalized) exit time is localized around its mean value
which is equal to 1/(2d). In particular, the probability that s does
not belong to an interval (tmin, tmax), can be made negligible by
choosing tmin and tmax appropriately. For instance, if tmin = 0.001
and tmax = 10, one has

Pfs R ð0:001;10Þg ¼ 1� S0ð0:001Þ þ S0ð10Þ < 10�12d ðd ¼ 2;3Þ:
ð8Þ

As a consequence, the exit times beyond this interval can be com-
pletely ignored.

The explicit form of Eqs. (4) and (5) allows one to generate exit
times in a standard way. Inverting numerically the function S0(t)
(i.e., finding a function T0(x) such that S0(T0(x)) = x for any x be-
tween 0 and 1), one obtains a mapping from random variables vn

with a uniform distribution on the unit interval, to the exit times

sn ¼
‘2

n

D
T0ðvnÞ ð9Þ

for the disk or sphere of radius ‘n and for a given diffusion coeffi-
cient D. The uniform random variables vn are generated by a routine
function for pseudo-random numbers.

In summary, two preliminary numerical procedures are re-
quired for generating the exit times:
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Fig. 2. Left: The survival probability S0(t) and its short-time and long-time asymptotic be
shown). The dashed horizontal line at S0(t) = x illustrates the construction of the inverse f
time and long-time asymptotic behaviors derived from Eqs. (6) and (7). The vertical dot
(1) Finding a finite number of positive zeros {a0k} of Bessel func-
tion J0(z). The inequalities pk < a0k < p(k + 1) allow one to
search for a single zero on each interval (pk,pk + p) by bisec-
tion method or Newton’s method. Since smaller times
require larger truncation sizes, the asymptotic formula (6)
can be used instead of the truncated series in Eqs. (4) and
(5) to improve the accuracy at short times. In three dimen-
sions, this step is skipped because the positive zeros of the
spherical Bessel function j0(z) = sin(z)/z are: a0k = p(k + 1).

(2) Constructing the function T0(x) as a numerical solution
T0(x) = t of the equation S0(t) = x for a fine uniform mesh of
points x. The monotonous decrease of S0(t) ensures, for any
x, the unique solution which can be computed by bisection
method or Newton’s method.

Both procedures rely on classical numerical methods. Moreover,
these procedures have to be performed once and forever while the
stored values of the function T0(x) can be loaded before starting
Monte Carlo simulations. As a consequence, the generation of the
exit times during simulations is reduced, through Eq. (9), to a rou-
tine generation of uniformly distributed pseudo-random numbers.

2.2. Gradient encoding

In contrast to basic Monte Carlo simulations, the jump length in
FRWs is set by the geometric constraints (distance to the boundary),
while the time step is random. As time steps can now be large, the
computation of the dephasing u in Eq. (1) is a challenging problem.

From now on, we focus on a linear magnetic field gradient
g = g1e1 + � � � + gded, where ei are the unit vectors along each coordi-
nate axis (i = 1, . . . ,d), and gi are the projections of g onto these
axes. The magnetic field inhomogeneity B(r) = (r � g) is the scalar
product between r and g or, equivalently, the projection of the vec-
tor r onto the gradient g. The total dephasing u is

u ¼ cðg1/1 þ � � � þ gd/dÞ;

where /i is the (random) normalized phase along the ith coordinate
axis:

/i ¼
Z t

0
dt0ðei � rðt0ÞÞ: ð10Þ

Our goal is now to withdraw the trajectory r(t0) by expressing the
random variable /i in terms of the sequence {rn,‘n,sn} generated
by a FRW algorithm.

For any random trajectory r(t0), the sequence of inscribed disks
(with their centers rn and radii ‘n) and the associated exit times sn

can be constructed, as described earlier. These disks (or balls in
three dimensions) split the trajectory into successive parts, the
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haviors (6) and (7) for the unit disk (the curve for the unit sphere is similar and not
unction T0(x). Right: The probability density �dS0(t)/dt of the exit time and its short-
ted line shows the mean exit time 1/4.
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nth part having started at the center rn of the nth disk at time
tn ¼

Pn
j¼1sj and exited this disk at rn+1 at time tn+1 = tn + sn+1. The

number of these parts is also random. Since Brownian motion is
a Markov process (no memory), each part of the trajectory, once
its starting and arrival points are fixed, is independent from the
other parts. As a consequence, the random dephasing d/i,n acquired
along the ith coordinate axis during diffusion inside the nth disk,

d/i;n¼
Z tnþ1

tn

dt0ðei �rðt0ÞÞ ðrðtnÞ¼ rn;rðtnþ1Þ¼ rnþ1;tnþ1¼ tnþsnþ1Þ;

ð11Þ

is independent from the other parts of the trajectory. Figuratively
speaking, the trajectory is ‘‘pinned’’ at points r(tn) = rn (n =
0,1,2, . . .) in order to determine the successive dephasing d/i,n sepa-
rately from each other. Shifting the starting position and the starting
time of the nth part of Brownian trajectory r(t0) (between the ‘‘pin-
ning’’ points rn and rn+1), one can write rðt0Þ ¼ rn þwt0�tn , where
wt0 is the Brownian motion started from the origin at time 0
(w0 = 0) and conditioned to exit the disk (ball) of radius
‘n = jrn+1 � rnj at point rn+1 � rn at time sn+1: wsnþ1 ¼ rnþ1 � rn. In
other words, the process wt0 represents the motion of a particle in-
side the nth disk, i.e., during one jump between rn and rn+1. The ac-
quired dephasing is then

d/i;n ¼
Z tnþ1

tn

dt0ðei � ðrn þwt0�tn ÞÞ ¼ snþ1xi;n þ
Z snþ1

0
dt0ðei �wt0 Þ;

where xi,n = (ei � rn). The second term is a random variable which de-
pends on three variables, sn+1, ‘n and rn+1 � rn, which will be gener-
ated by a FRW algorithm, as well as on the trajectory wt0 inside the
disk whose generation we want to avoid. If the conditional proba-
bility distribution of the second term (with fixed sn+1, ‘n and
rn+1 � rn) was known, one could generate this random variable at
each step. Unfortunately, there is no easily computable formula
for this distribution. We propose therefore to approximate this ran-
dom variable by its mean value, averaged over all possible realiza-
tions of the process wt0 . One of the main results of the paper is the
explicit formula for this mean value which is derived in Appendix A.
The dephasing d/i,n becomes

d/i;n ’ snþ1xi;n þ
‘2

n

D
ðxi;nþ1 � xi;nÞUd

Dsnþ1

‘2
n

 !
; ð12Þ

where ‘2
n=D is the rescaling factor, (xi,n+1 � xi,n)/‘n represents cosh

from Eq. (A.2), and

U2ðtÞ ¼

P1
k¼0

1
a0kJ1ða0kÞ

e�a2
0k

t þ 1
2J0ða1kÞ

e�a2
1k

t
h i

2
P1
k¼0

a0k
J1ða0kÞ

e�a2
0k

t
; ð13Þ

U3ðtÞ ¼

P1
k¼0

3ð�1Þke�a2
0k

t � ð�1Þk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1k þ 1
q

e�a2
1k

t
h i

4
P1
k¼0
ð�1Þka2

0ke�a2
0k

t
: ð14Þ

As earlier for S0(t) and T0(x), the function Ud(t) has to be computed
once and forever on a fine mesh of times t between 0.001 and 10 (or
even a shorter interval). In fact, the argument of the function Ud(t)
in Eq. (12) is the normalized exit time, for which the inequality (8)
excludes the values smaller 0.001 or larger 10. The short-time
asymptotic behavior

UdðtÞ ’
1
2

tð1� 2tÞ þ Oðt3Þ ð15Þ

is useful for computing Ud(t) at t < 0.1 (see Appendix A). The accu-
racy of this approximation is illustrated by Fig. A.1.

One simulation run is continued until the time counter tn+1 ex-
ceeds the acquisition time t.
2.3. The last step

The last step is different from the others because the gradient
encoding is switched off at the fixed acquisition time t, while the
particle continues to diffuse inside the disk up to a later exit time
tn+1 (without dephasing between t and tn+1). In other words, the
upper limit tn+1 of the integral in Eq. (11) has to be replaced by t
for the last step:

d/̂i ¼
Z t

tn

dt0ðei � rðt0ÞÞ ðrðtnÞ ¼ rn; rðtnþ1Þ ¼ rnþ1; tnþ1 ¼ tn þ snþ1Þ:

A rigorous consideration would consist in generating a random po-
sition of Brownian motion at the acquisition time t inside the disk
and computing the corresponding phase shift. Although it is feasible
in theory, a practical implementation would significantly slow
down simulations. We propose two approximate solutions to this
problem.

The first solution is a natural extension of the previous analysis
when the contribution Ud(t) in Eq. (12) would be replaced by an-
other one with the upper limit t instead of tn+1. This new contribu-
tion, which depends on both time variables t and tn+1, is mentioned
in Appendix A. Although the explicit form (A.14) allows for an
accurate preliminary computation, the dependence on two vari-
ables requires a lot of stored data. For this reason, we do not em-
ploy Eq. (A.14) and propose below the second approximate
solution.

Since the final position of the particle at the acquisition time t is
irrelevant, one can average over all the final positions. The aver-
aged first moment of the acquired dephasing is strictly zero be-
cause of the rotational symmetry. In turn, the second moment is
a measure of fluctuations of the random dephasing during the last
step. At first thought, one could suggest to take the second moment
of the dephasing due to unrestricted diffusion which is equal to
2D(t � tn)3/3. However, this naive approximation ignores the fact
that the particle is conditioned to remain inside the disk of radius
‘n up to the acquisition time t (since the exit time tn+1 exceeds t). In
Appendix B, we take this condition into account and calculate the
conditional second moment of the dephasing. The last increment of
the phase can then be approximated as

d/̂i ¼ ðt � tnÞxi;n þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Dðt � tnÞ3=3

q bUd
ðt � tnÞD

‘2
n

 !
g; ð16Þ

where g is a Gaussian random variable with mean zero and var-
iance 1. The function bUdðtÞ that accounts for the restricted char-
acter of diffusion, is defined in such a way that ð2t3=3Þ½bUdðtÞ�2 ¼
S2ðtÞ=S0ðtÞ is the conditional second moment of the dephasing up
to time t inside the unit disk (or ball) with absorbing boundary
condition, i.e.,

bUdðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðtÞ=S0ðtÞ

2t3=3

s
; ð17Þ

where S2(t) is the second moment for survived particles and S0(t) is
the survival probability from Section 2.1. In Appendix B, we derived
the exact explicit formulas for S2(t) for the unit disk (d = 2),

S2ðtÞ ¼ �
1

48

X1
k¼0

a0k

J1ða0kÞ
3a�4

0k � 56a�6
0k þ 288a�8

0k

� �
e�a2

0k
t

� 1
2

X1
k¼0

1
a4

1kJ0ða1kÞ
e�a2

1k
t þ t

6

X1
k¼0

a0k

J1ða0kÞ
a�4

0k þ 4a�6
0k

� �
e�a2

0k
t;

ð18Þ

and for the unit sphere (d = 3)



Fig. 3. When the particle has approached the reflecting boundary @X closer than e,
it is ‘‘released’’ on a circle of radius R centered at the encounter boundary point r0n . If
the released point A does not belong to the confining domain X, one uses its mirror
reflected point rn+1 inside X. The radius R should be chosen as large as possible, but
small enough in comparison to the characteristic length of the boundary (so that
the boundary is almost flat at scale R).
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S2ðtÞ ¼
1

24

X1
k¼0

ð�1Þk �a�2
0k þ 17a�4

0k � 174a�6
0k

� �
e�a2

0k
t

þ 5
12

X1
k¼0

ð�1Þk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1k þ 1
q
a4

1k

e�a2
1k

t

þ t
12

X1
k¼0

ð�1Þk 4a�2
0k þ 3a�4

0k

� �
e�a2

0k
t: ð19Þ

The coefficients in these formulas are fully expressed in terms of
zeros a0k and a1k. In practice, the above infinite series are truncated
(the required accuracy being controlled by the truncation size) and
the function bUdðtÞ is evaluated numerically for on a fine mesh of
times t between 0.001 and 10. As earlier, the function bUdðtÞ has to
be computed once and forever, before starting Monte Carlo simula-
tions. When the simulations are running, the stored values of bUdðtÞ
are plugged into Eq. (16), eventually with an appropriate interpola-
tion. In other words, even if the explicit formulas for bUdðtÞmay look
complicated, this step does not slow down Monte Carlo simulations.

2.4. Boundary condition

The presence of a boundary is the major complication for re-
stricted diffusion. Various physical processes may happen with a
nucleus near or at the boundary (e.g., relaxation or permeation).
Since the jump length is equal to the distance to the boundary, a
particle may approach the boundary infinitely close but never hits
it. One has therefore to consider a surface layer of a finite thickness
e. When the distance to the boundary is smaller than e, the particle
‘‘interacts’’ with the boundary. One of the three boundary condi-
tions is usually implemented in order to account for this
interaction:

(1) Dirichlet boundary condition mimics the situation when the
nucleus either completely loses its magnetization, or leaves
the domain through a (perfectly) permeable wall and never
returns; in both cases, the nucleus does not contribute to the
FID, and the simulation of its trajectory is terminated;

(2) Neumann boundary condition states that the magnetization
is not affected at all, the nucleus is just moved away from
such a reflecting boundary, and the simulation is resumed;

(3) Robin boundary condition realizes a random choice between
the above outcomes with a given reflection probability
(which in turn is determined by surface relaxivity or mem-
brane permeability).

The Dirichlet boundary condition has the simplest implementa-
tion: the simulation is terminated whenever the nucleus ap-
proached the boundary closer than e. However, boundaries are
almost reflecting in many NMR applications, and we focus here
on Neumann boundary condition. An extension of the algorithm
to Robin boundary condition, which seems to be possible, is be-
yond the scope of the paper.

When a particle reaches the boundary, it should be somehow
‘‘released’’ in an interior point of the confining domain to continue
diffusive motion. The most usual way for implementing reflection
is to move the particle to a fixed distance from the boundary. This
distance is close to the surface layer thickness e, and the particle
continues diffusive motion by small jumps (in the order of e). As
a consequence, a lot of computational time is wasted for a too de-
tailed simulation of Brownian trajectory near the boundary. In
what follows, we propose a more efficient solution.

If rn is the current position of the particle near the boundary @X
(i.e., jrn � @Xj < e), one finds the boundary point r0n 2 @X which is
the closest to rn, and take a disk (or ball) centered at r0n and of some
radius R such that e	 R	 a, where a is the characteristic length
scale of the boundary near rn (e.g., its radius of curvature). On
the one hand, the disk should be as large as possible for performing
a bigger jump and thus reducing computational time. On the other
hand, the disk should be small enough so that the part of the
boundary delimited by this disk can be treated as flat (Fig. 3). Since
the boundary is reflecting, one can consider Brownian trajectory in
the whole disk (even outside the confining domain) and then re-
flect the exterior part of the trajectory in respect to the (locally flat)
boundary. In particular, if the first encounter with the disk occurs
outside the confining domain (as illustrated on Fig. 3), the hitting
point A should be reflected to its mirror point rn+1. For the reflected
Brownian motion inside the disk (or ball), the mean phase shift
during the jump from rn to rn+1 is computed in Appendix C that
yields the increment for the reflection step:

d~/i;n ¼ snþ1xi;n þ ni
R3

D
eUd

Dsnþ1

R2

� �
þ xi;nþ1 � niðrnþ1 � nÞ
jrnþ1 � nðrnþ1 � nÞj


 R3

D
Ud

Dsnþ1

R2

� �
; ð20Þ

where n is the unit normal vector at the boundary point r0n pointing
towards the interior of the confining domain, ni = (n � ei), Ud(t) was
earlier defined by Eqs. (13) and (14), and the new function eUdðtÞ is

eU2ðtÞ ¼
t
4
þ

P1
k¼0

ið1Þk � tið2Þk

� �
e�a2

0k
t

P1
k¼0

a0k
J1ða0kÞ

e�a2
0k

t
; ð21Þ

eU3ðtÞ ¼
t
4
; ð22Þ

with the coefficients ið1Þk and ið2Þk given by Eq. (C.1) (see discussion in
Appendix C). Quite surprisingly, the function eU3ðtÞ has a much sim-
pler form than its two-dimensional counterpart eU2ðtÞ. Once again,
the function eU2ðtÞ has to be computed once and forever. We pro-
pose a simple empirical approximation

eU2ðtÞ ’
1
4 tð1� 0:75tÞ t < 0:12;
0:212t þ 0:00283 t > 0:12:

(

The maximum relative error of this approximation is 1.7% (at
t = 0.12). It is worth stressing that this relation is based on the
numerical computation of the eU2ðtÞ, in contrast to other approxi-
mate relations in the paper which were rigorously derived by ana-
lytical methods.

Since the surface layer thickness e is chosen to be very small,
the distinction between rn and r0n can be ignored. The advantage
of the reflection step is that a particle is moved relatively far away
from the boundary so that further jumps will be much larger than
e.
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2.5. Algorithm

One simulation run starts from a randomly chosen initial point
r0 and generates iteratively the successive positions rn at times tn

and the acquired phase increments d/i,n (or d~/i;n, or d/̂i) along each
coordinate axis (Fig. 4). The simulation run is terminated when the
time counter exceeds the acquisition time t. The output of one sim-
ulation run is a set of accumulated phases /i along each coordinate
axis (i = 1. . .d). Launching the algorithm N times, one obtains N ran-
dom realizations f/j

igðj ¼ 1 . . . NÞ of these phases, i.e., their empir-
ical distributions. After that, the signal attenuation as a function of
the gradient g is approximated as

EðgÞ
E0
’ 1

N

XN

j¼1

exp ic
Xd

i¼1

gi/
j
i

" #
ð23Þ

(the imaginary unit i in front of c should not be confused with the
summation index i). Since the signal attenuation is computed after
obtaining the empirical distributions of /i, there is no need to re-
start Monte Carlo simulations for each gradient direction and inten-
sity. This is a significant advantage of Monte Carlo techniques in
Fig. 4. Algorithmic scheme of one simulation run. The physical parameters (t,D)
S0ðtÞ; T0ðxÞ; UdðtÞ; eUdðtÞ and bUdðtÞ which had been computed and tabulated once and fo
random uniformly chosen positions nn on the unit circle (sphere) are easy to generate
respectively. The shape of the diffusion-confining domain enters uniquely through three
@X; (2) generating uniformly distributed initial position r0; and (3) computing the norma
each confining domain.
comparison to finite difference or finite element methods which
solve the Bloch–Torrey equation for a single value of the gradient.

The input of the algorithm consists in physical parameters
(acquisition time t and diffusion coefficient D) and numerical
parameters (number of trajectories N, surface layer thickness e
and reflection radius R). The choice of numerical parameters is a
compromise between accuracy and rapidity.

� Number of Brownian trajectories. The number of trajectories N
determines how accurately the expectation in Eq. (2) is approx-
imated by Eq. (23). The statistical error of Monte Carlo simula-
tions typically decreases as 1=

ffiffiffiffi
N
p

. Since the signal-to-noise
ratio in diffusion-weighted NMR techniques is often between
100 and 1000, the choice of N between 104 and 106 allows for
a reliable comparison to experimental results.
� Surface layer thickness. The surface layer thickness e should be

much smaller than the smallest geometrical feature of the
boundary. In practice, this parameter can be chosen by comput-
ing the signal with several values of e and finding such e for
which the resulting FID becomes independent of e. Note that
the computational time increases with e logarithmically slowly
that allows one to choose very small e indeed.
and numerical parameters (R,e) are chosen prior to execution. The functions
rever, are loaded prior to execution. The exit times sn are generated by Eq. (9). The
. The phase increments d/i;n; d/̂i and d~/i;n are given by Eqs. (12), (16) and (20),

functions: (1) finding the distance jr � @Xj from any interior point r to the boundary
l vector n at any boundary point. These functions have to be specifically designed for
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� Reflection radius. After hitting the boundary, a particle is
released at distance R from the hitting point. On the one hand,
the reflection radius R has to be chosen as large as possible
because the computational time is inversely proportional to R.
On the other hand, this radius should be smaller than geomet-
rical features of the boundary (otherwise, the computation of
the mean phase shift for the half-disk or half-sphere would be
inaccurate). There is no universal criterion for choosing R, the
choice being dependent on the confining domain. A practical
choice for R consists in computing the signal for different R
and checking when the resulting FID becomes independent of R.

3. Discussion

The efficiency of a fast random walk algorithm significantly re-
lies on fast computation of the distance to the boundary. In general,
one can use hierarchical Whitney decomposition of the diffusion-
confining domain or a set of ‘‘distance maps’’ at different length
scales [36]. A specific geometrical structure of the domain (e.g.,
self-similarity) also helps to speed up the computation of the dis-
tance [37,38]. Since this problem is generic for fast random walk
algorithms, while its solution is in turn specific for each confining
domain, further discussion is beyond the scope of the paper. Sim-
ilarly, the choice of the starting point (uniform or not) which
should be realized specifically for each confining domain, is not
discussed here.
3.1. Comparison between theory and simulations

We check the validity and accuracy of the developed fast ran-
dom walk algorithm by calculating the FID by two different meth-
ods. On the one hand, the FID can be found using matrix
formalisms [16,23,24]. This technique was shown to be very accu-
rate for simple confining domains such as a sphere and a parallel-
epiped. Choosing these two domains for our consideration, we get
‘‘benchmark’’ signals for validating Monte Carlo results. On the
other hand, we compute the empirical distributions of the normal-
ized phases /i by our FRW algorithm. Fig. 5 shows the FID of water
molecules (D = 2 
 10�9 m2/s) diffusing inside the parallelepiped of
size L 
 2L 
 3L (with L = 10�5 m) up to the acquisition time
t = 50 ms. Each curve corresponds to the gradient oriented along
one coordinate axis. Monte Carlo simulations were performed with
N = 105 random walkers, e = 10�6L, and R = 0.1L. Even for such a
large reflection radius, the agreement between these two ap-
proaches is excellent.
0 20 40 60 80
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

g (mT/m)

FI
D

x (matrix)
x (MC)
y (matrix)
y (MC)
z (matrix)
z (MC)

Fig. 5. The normalized FID as a function of the gradient intensity g inside the
parallelepiped of size L 
 2L 
 3L, with L = 10�5 m, D = 2 
 10�9 m2/s and t = 50 ms.
One can see an excellent agreement between the matrix formalism (considered as a
‘‘benchmark’’) and Monte Carlo simulations with N = 105 random walkers
(e = 10�6L,R = 0.1L).
In order to access the accuracy of the algorithm in a more quan-
titative way, we compute the second moment of the empirical total
dephasing

Ef/2
i g ’

1
N

XN

j¼1

ð/j
iÞ

2

and compare the normalized moment Ef/2
i g=t2 to its theoretical va-

lue given in Appendix D. In addition, we estimate the statistical er-
ror of the empirical second moment by computing Ef/2

i g=t2 from
ten independent executions of the algorithm. The results for the
unit sphere are shown in Table 1. The relative error of the empirical
second moment (divided by t2) as compared to the exact theoretical
value is shown in percents. All relative errors are below 1%, and they
all belong to the interval of statistical uncertainty. This is an accu-
rate validation of the algorithm.

The last row of Table 1 shows CPU (in seconds) which required
for this computation (realized on Dual Core AMD Opteron Proces-
sor 265 at 1.8 GHz, with RAM 4 GB). As expected, the CPU linearly
increases with the acquisition time t as the number of jumps is
approximately proportional to t. This linear increase is a typical
drawback of most numerical techniques, including basic Monte
Carlo simulations and basic finite difference or finite element
methods (without adaptable time steps). The advantage of Monte
Carlo techniques is a straightforward possibility of parallelization
since the simulation runs are independent from each other. More
importantly, the computational time of fast random walk algorithms
is known in general to be weakly dependent on the geometrical com-
plexity of the confining domain because the jump distance is al-
ways adapted to the local geometrical structure. A numerical
study of these issues is currently in progress.

3.2. Time-dependent gradient

The FID signal corresponding to a time-independent gradient is
the simplest PGSE measure for restricted diffusion. In practice,
spin-echo or stimulated spin-echo sequences are often preferred
[17]. In order to describe the related signal attenuation, an effective
temporal profile f(t) can be included into Eq. (1):

u ¼
Z t

0
dt0cf ðt0ÞBðrðt0ÞÞ:

For instance, the Hahn spin-echo sequence is described by f(t0) = 1
for 0 < t0 < t/2 and f(t0) = �1 for t/2 < t0 < t. In theory, a given tem-
poral profile f(t0) could be directly incorporated into Eq. (A.8) for
the normalized mean phase Ef/g. The integral over time t1 would
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Fig. A.1. The function U3(t) and the short-time and long-time asymptotic formulas
(15) and (A.23) for the unit sphere. The two asymptotic curves cross at t around 0.18
(the ‘‘worst’’ point), for which the maximum relative error is around 1.7%. Similar
results were obtained for the unit disk (not shown).



Table 1
Relative error of the second moment (divided by t2) for the unit sphere (all the
quantities here are dimensionless, with L = 1 and D = 1). The empirical phase
distribution was computed by our Monte Carlo simulation with N = 105 particles,
e = 10�6 and R = 0.1. Three rows show the relative error (in percents) of the empirical
second moment as compared to the exact theoretical value. Numbers in parentheses
indicate statistical errors (also in percents) of the empirical second moment. For all
cases, the deviation from the theoretical value lies within the statistical uncertainty.
The last row shows CPU (in seconds) which grows linearly with time t, as expected.

t = 0.01 t = 0.1 t = 1 t = 10

x 0.53 (0.94) 0.77 (1.06) 0.69 (1.20) 0.39 (1.74)
y 0.02 (0.71) 0.22 (0.65) 0.55 (0.59) 0.31 (1.03)
z 0.04 (0.82) 0.51 (1.02) 0.43 (1.07) 0.29 (0.82)

CPU (s) 11 106 1059 10,508
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then result in a modification of Eq. (A.8). In practice, however,
this modification can lead to a drastic increase of the computa-
tional time. For simple spin-echo sequences with piecewise con-
stant temporal profiles, it is therefore preferential to calculate
the total dephasing successively for each time interval with a
constant gradient. For instance, an implementation of the Hahn
spin-echo encoding is as simple as that of the FID. In fact, one
has u = u1 � u2, with

u1 ¼
Z t=2

0
dt0cBðrðt0ÞÞ; u2 ¼

Z t

t=2
dt0cBðrðt0ÞÞ;

where both u1 and u2 can be found by the FRW algorithm with few
minor modifications.

3.3. Further extensions

Monte Carlo algorithms are acknowledged for their flexibility.
In addition to the gradient encoding, various physical processes
can be taken into account during the simulation of a random
trajectory.

For instance, one can account for the enhanced attenuation due
to bulk relaxation. In fact, since the duration of each jump is
known, the corresponding attenuation factor (the probability of
loosing magnetization during the jump) can be easily found. If
the bulk relaxation rate is spatially uniform, all the nuclei are af-
fected in the same way, and finding the common attenuation pre-
factor is trivial. If, on the opposite, there are regions with distinct
bulk relaxation rates, the nucleus is affected differently in each re-
gion, and the cumulative attenuation factor can be found (how-
ever, the passage between two adjacent regions has to be
considered in detail).

Surface relaxation is another common origin of signal attenu-
ation. When the nucleus approaches the boundary close enough,
it may experience the presence of magnetic impurities or strong
local gradients due to susceptibility difference between the solid
and void phases. The resulting attenuation can in general be com-
puted in Monte Carlo simulations. However, the efficiency of the
presented fast random walk algorithm relies significantly on
reflection steps when a trajectory near the boundary is replaced
by a single jump. In the presence of surface relaxation, the reflec-
tion step has to be revised in order to account for the possibility
of loosing magnetization. This issue will be addressed in a future
work.

In biological applications, the nuclei can diffuse inside one com-
partment and transfer to another one through a semi-permeable
boundary. It seems possible to implement permeations in the fast
random walk algorithm through the reflection step. When a parti-
cle reaches the semi-permeable boundary and has to make a reflec-
tion jump, one can randomly choose to which side of the boundary
to place the particle, with a probability that depends on the perme-
ability of the boundary (Fig. 3). Such an extension of the algorithm
can be tested on multilayered structures for which an exact spec-
tral solution was recently provided [39].

4. Conclusion

We proposed a new algorithm for computing pulsed-gradient
spin-echo signal attenuation due to restricted diffusion in com-
plex porous media. We showed that the gradient encoding can
be incorporated into a fast random walk algorithm by summing
the mean phase shifts during each jump. Since the simulation is
continuously adapted to local length scales, the efficiency of the
algorithm is weakly dependent on the geometrical complexity of
the medium. The algorithm is a flexible numerical tool which
can be implemented for computing the signal attenuation in
hierarchical or multiscale porous media, ranging from model
geometries (random packs of spheres and cylinders, fractals, per-
colation clusters, etc.) to complex natural structures (concrete,
sandstones, sedimentary rocks, brain, lungs, etc.). The gradient
encoding module (implemented in C) is provided on personal
request.
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Appendix A. Mean dephasing

In this Appendix, we compute the conditional expectation of the
random variable

/ ¼
Z t

0
dt0Bðwt0 Þ; ðA:1Þ

where wt0 is the Brownian motion which is started from a point rini

inside a confining domain X and conditioned to exit this domain at
a fixed boundary point rexit at time t, without hitting the boundary
@X until this time. As shown below, when X is the unit disk or
sphere and rini is its origin, the mean dephasing is

Ef/g ¼ UdðtÞ cos h; ðA:2Þ

where h is the angle between the gradient g and the vector pointing
from the origin towards the boundary point rexit, and Ud(t) is given
by Eqs. (13) and (14).

A.1. General confining domain

For a prescribed time t and prescribed initial and exit points rini

and rexit, we introduce the joint probability for Brownian motion to
exit a bounded domain X for the first time s in an e-vicinity of rexit

and for s to be in a d-vicinity of t:

Ptðrini; rexitÞ ¼ Pfjws � rexitj < e; s 2 ðt; t þ dÞg;
s ¼minft0 > 0 : wt0 2 @Xg:

ðA:3Þ

Since Brownian motion is a Markov process, the conditional expec-
tation of / for given rini, rexit and t can be written as

Ef/g ¼
R t

0 dt1
R

X drGt1 ðrini; rÞBðrÞPt�t1 ðr; rexitÞ
Ptðrini; rexitÞ

; ðA:4Þ

where Gt(r0,r)dr is the probability to move from r0 to a dr-vicinity of
a point r in time t without hitting the boundary, and Gt(r0,r) is
the diffusion propagator or heat kernel with Dirichlet boundary
condition on @X:
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@

@t
Gtðr0; rÞ � DDGtðr0; rÞ ¼ 0 ðr 2 XÞ;

Gtðr0; rÞ ¼ 0 ðr 2 @XÞ;
Gt¼0ðr0; rÞ ¼ d ðr� r0Þ;

d(r � r0) being the Dirac distribution.
Eq. (A.4) has a clear probabilistic interpretation: a particle

started from rini first arrives at an intermediate time t1 in a vicinity
of a point r with probability Gt1 ðrini; rÞdr, without hitting the
boundary. The dephasing is ‘‘probed’’ at this (random) point
through the factor B(r). After that, the particle diffuses inside X
during the remaining time t � t1 and exits the domain near point
rexit. The integrals stand for averaging over all intermediate points
r and times t1. The denominator expresses the conditional nature
of the expectation (the fact that the exit point rexit and the exit time
t are prescribed).

When e and d in Eq. (A.3) are small, the joint probability Pt(r0,r)
is described by its density gt(r0,r),

Ptðr0; rÞ � ded�1gtðr0; rÞ;

where ed�1 stands for the surface area of the e-vicinity of the bound-
ary point r. Although the probability Pt(r0,r) vanishes in the limit of
e and d going to 0, the conditional expectation remains well-
defined:

Ef/g ¼
R t

0 dt1
R

X drGt1 ðrini; rÞBðrÞgt�t1
ðr; rexitÞ

gtðrini; rexitÞ
: ðA:5Þ

We find that

gtðr0; rÞ ¼ �D
@Gtðr0; rÞ

@n
; ðA:6Þ

where @/@n is the normal derivative to the boundary directed to-
ward the interior of the domain X.

The diffusion propagator has the spectral decomposition

Gtðr; r0Þ ¼
X

m

e�Dkmtu�mðrÞumðr0Þ; ðA:7Þ

where the asterisk denotes the complex conjugate, and um(r) and km

are the eigenfunctions and eigenvalues of the Laplace operator:

DumðrÞ þ kmumðrÞ ¼ 0 ðr 2 XÞ;
umðrÞ ¼ 0 ðr 2 @XÞ:

The latter Dirichlet boundary condition guarantees that Brownian
motion does not hit the boundary (since the contribution of the tra-
jectories that have hit the boundary is equal to 0).

Using the spectral decomposition (A.7), the conditional expecta-
tion can be written as

Ef/g ¼

R t
0 dt1

P
m1 ;m2

Um1 e�Dkm1 t1Bm1 ;m2 e�Dkm2 ðt�t1Þ eUm2P
m

Um
eUme�Dkmt

ðA:8Þ

where

Um ¼ u�mðriniÞ; ðA:9Þ

eUm ¼ �D
@umðrÞ
@n

� �
r¼rexit

; ðA:10Þ

Bm;m0 ¼
Z

X
dr u�mðrÞ BðrÞ um0 ðrÞ: ðA:11Þ

The integration over time yields

Ef/g ¼

P
m

Im þ UmBm;m
eUmt

� �
e�Dkmt

P
m

Um
eUme�Dkmt

; ðA:12Þ
where

Im ¼
X

m0–m

UmBm;m0
eUm0 þ Um0Bm0 ;m

eUm

km0 � km
: ðA:13Þ

These relations are applicable to any bounded domain X and arbi-
trary magnetic field B(r). In the next two subsections, we give expli-
cit formulas for these coefficients for a linear magnetic field
gradient B(r) inside the unit disk and sphere.

For the last step (see Section 2.3), a particle remains inside the
disk until the exit time s which exceeds the acquisition time t so
that Eq. (A.5) becomes

Ef/g ¼
R t

0 dt1
R

X drGt1 ðr0; rÞB ðrÞgs�t1
ðr; rexitÞ

gsðr0; rexitÞ
: ðA:14Þ

This first moment, for which a spectral decomposition similar to
Eq. (A.8) can be easily written, depends on both time variables t
and s. Since this double dependence may be inconvenient for
practical use, another solution for the last step will be presented
in Appendix B.

A.2. The unit disk

For the unit disk with Dirichlet boundary condition, the Laplace
operator eigenvalues and eigenfunctions are [41,42]

knk ¼ a2
nk; unkðr; hÞ ¼

�nffiffiffiffi
p
p 1
�J0nðankÞ

JnðankrÞ cos nh; ðA:15Þ

where �n ¼
ffiffiffi
2
p

for n > 0 and �0 = 1, J0nðzÞ is the derivative of the Bes-
sel function of the first kind, and {ank}k=0, 1, 2, . . . is the set of all po-
sitive zeros of the function Jn(z) (with n = 0,1,2, . . .). For
convenience, the double index nk is used instead of the single index
m to enumerate the eigenfunctions and eigenvalues. Similar nota-
tion is also adapted for the elements of the matrix B and vectors
U and eU (e.g., Bnk;n0k0 is not a tensor of fourth rank but a matrix).

The elements of the matrix B for the linear magnetic field gra-
dient B(r) = rcosh have been calculated in [16,43]. In the case of
Dirichlet boundary condition, we obtain

Bnk;n0k0 ¼ dn;n0�1ð1þ dn;0 þ dn0 ;0Þ1=2 2ankan0k0

ða2
nk � a2

n0k0
Þ2
:

The elements of the vectors U and eU are given by Eqs. (A.9) and (A.10).
For the starting point rini = (0,0) at the origin and the arrival point re-

xit = (cosh, sinh) on the boundary (the circle of radius 1), one gets

Unk ¼ dn;0
1ffiffiffiffi

p
p

J1ða0kÞ
; ðA:16Þ

eUnk ¼ D
�nffiffiffiffi
p
p ank cos nh: ðA:17Þ

The above explicit formulas allow us to calculate the coefficients in
Eq. (A.8):

Unk
eUnk ¼ dn;0

Da0k
pJ1ða0kÞ

;

Ink ¼ 4D cos h
p dn;0

a0k
J1ða0kÞ

P1
k0¼0

a2
1k0

ða2
1k0
�a2

0k
Þ3
þ dn;1a2

1k

P1
k0¼0

a0k0
J1ða0k0 Þ

1
ða2

0k0
�a2

1k
Þ3

" #
:

The coefficients Ink are proportional to cosh, i.e., to the projection of
the arrival point onto the gradient direction. Using the summation
technique described in [44], one can compute the above sums over
k0 to get

Unk
eUnk ¼ dn;0

Da0k

pJ1ða0kÞ
;

Ink ¼
D cos h

p
dn;0

1
2a0kJ1ða0kÞ

þ dn;1
1

4J0ða1kÞ

	 

: ðA:18Þ
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The presence of dn,0 and dn,1 reduces the summation over n in Eq.
(A.8) yielding Eq. (13).

A.3. The unit sphere

The Laplace operator eigenvalues and eigenfunctions for the
unit sphere with Dirichlet boundary condition are [41,42]

knk ¼ a2
nk; unkðr; hÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nþ 1
p ffiffiffiffiffiffiffi

2p
p 1

�j0nðankÞ
jnðankrÞPnðcos hÞ; ðA:19Þ

where j0nðzÞ is the derivative of the spherical Bessel function of the
first kind, Pn(z) the Legendre polynomial, and {ank}k=0, 1, 2, . . . the
set of all positive zeros of the function jn(z) (with n = 0,1,2 . . .). Since
the applied magnetic field B(r) is independent of the polar coordi-
nate, we omitted this coordinate and the related third index for
the eigenfunctions.

For the starting point rini at the origin and the arrival point rexit

on the boundary (the sphere of radius 1), one obtains

Unk ¼ dn;0
1ffiffiffiffiffiffiffi

2p
p

j1ða0kÞ
; ðA:20Þ

eUnk ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þ=ð2pÞ

p
ankPnðcos hÞ: ðA:21Þ

The explicit formula for the matrix B for a linear magnetic field gra-
dient B(r) = rcosh in the unit sphere was derived in [16,43]. In the
case of Dirichlet boundary condition, one gets

Bnk;n0k0 ¼ dn;n0�1
ðnþ n0 þ 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2nþ 1Þð2n0 þ 1Þ

p 2ankan0k0

ða2
nk � a2

n0k0
Þ2
:

Using the above relations, we obtain

Unk
eUnk ¼ dn;0

Da0k
2pj1ða0kÞ

;

Ink ¼ 2D
p cos h dn;1a2

1k

P1
k0¼0

a0k0
j1ða0k0 Þ

1
ða2

1k
�a2

0k0
Þ3
þ dn;0

a0k
j1ða0kÞ

P1
k0¼0

a2
1k0

ða2
0k
�a2

1k0
Þ3

" #
:

Using the summation technique described in [44] and skipping
technical details, we give the final result

Unk
eUnk ¼ dn;0D ð�1Þk

2p p2ðkþ 1Þ2;

Ink ¼ D ð�1Þk
8p cos h 3dn;0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1k þ 1
q

dn;1

h i
:

ðA:22Þ

As for the unit disk, the coefficients Ink are proportional to cosh, that
is to the projection of the arrival point onto the gradient direction.
Once again, the presence of dn,0 and dn,1 reduces the summation
over n yielding Eq. (14).

A.4. Asymptotic behavior of the normalized first moment

The conditional expectation of the dephasing / is obtained in
the spectral form (A.8) of infinite sums of exponential functions
that nicely converge. For practical computation, smaller the time
t, larger the number of terms that should be kept to get an accurate
approximation. The major problem at small times is that both
numerator and denominator of Eqs. (13) and (14) are very small
so that their ratio Ud(t) is computed inaccurately. It is therefore
helpful to derive an asymptotic formula for Ud(t) for small t. Using
standard methods for investigating asymptotic behavior of the ser-
ies involving the Laplace operator eigenvalues (e.g., see [16,44]),
we obtain Eq. (15) for both cases d = 2 and d = 3. This relation is
in fact very accurate for t smaller than 0.1 (for t = 0.1, the absolute
error is of the order of 3.7 
 10�5 and the relative error is less than
0.2%).

The long-time behavior is simply obtained by keeping in Eqs.
(13) and (14) the exponential terms with the smallest ank:
UdðtÞ ’
1

2a2
00
þ J1ða00Þ

4a00 J0ða10Þ
e�ða

2
10�a2

00Þt ðd ¼ 2Þ;

3
4a2

00
�

ffiffiffiffiffiffiffiffiffiffi
a2

10þ1
p

4a2
00

e�ða
2
10�a2

00Þt ðd ¼ 3Þ:

8><>: ðA:23Þ

The accuracy of these asymptotic relations is illustrated on
Fig. A.1.

Appendix B. Last jump

We propose the following approximate solution for simulating
the last jump when the generated exit time sn+1 exceeds the
remaining time t � tn and the gradient encoding is switched off
earlier. Since the position of the particle at time t is irrelevant,
one can average the dephasing over all arrival points inside the
unit disk (or ball). Since the rotational symmetry cancels the first
moment, we focus on the second moment of the dephasing of a
particle conditioned to survive up to time t. The survival probabil-
ity is simply

S0ðtÞ ¼
Z

X
drGtð0; rÞ ¼

X
m

Um
eUme�kmt; ðB:1Þ

where the starting point is at the origin, Um = um(0), and the arrival
point is anywhere inside the domain:

eUm ¼
Z

X
drumðrÞ:

The conditional second moment is then the ratio between the sec-
ond moment S2(t) for survived particles and the survival probability
S0ðtÞ : Ef/2g ¼ S2ðtÞ=S0ðtÞ, where [16]

S2ðtÞ ¼ 2
R t

0 dt1
R t

t1
dt2
R

X dr1
R

X dr2
R

X dr3Gt1 ð0; r1ÞBðr1ÞGt2�t1 ðr1; r2Þ

Bðr2ÞGt�t2 ðr2; r3Þ ¼ 2
P

m1 ;m2 ;m3

Um1Bm1 ;m2Bm2 ;m3
eUm3 Fðt; km1 ; km2 ; km3 Þ

and

Fðt; km1 ; km2 ; km3 Þ ¼
Z t

0
dt1

Z t

t1

dt2e�km1 t1 e�km2 ðt2�t1Þe�km3 ðt�t2Þ:

In both two and three dimensions, the double index nk is used in-
stead of m. The Kronecker symbols dn,0 in Unk and eUnk, and dn;n0�1

in Bnk;n0k0 reduce the summation to

S2ðtÞ ¼ 2
X

k1 ;k2 ;k3

U0;k1
B0k1 ;1k2

B1k2 ;0k3
eU0k3

Fðt; k0k1
; k1k2

; k0k3
Þ;

where the function F for k1 – k3 reads as

Fðt; k0k1
; k1k2

; k0k3
Þ ¼ 1

k0k3
� k1k2

e�k0k1
t � e�k1k2

t

k1k2
� k0k1

� e�k0k1
t � e�k0k3

t

k0k3
� k0k1

" #
;

and for k1 = k3

Fðt; k0k1
; k1k2

; k0k3
Þ ¼ 1

k0k3 � k1k2

e�k0k1
t � e�k1k2

t

k1k2 � k0k1

� te�k0k3
t

" #
:

In what follows, we provide the explicit formula for S2(t) for the unit
disk and the unit sphere.

B.1. The unit disk

For the unit disk, Eq. (A.15) yields

eUnk ¼ dn;0
2
ffiffiffiffi
p
p

a0k
;

Combining with Eq. (A.16) for Unk, one gets Eq. (4) for the survival
probability S0(t), and
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S2ðtÞ ¼ 32
X

k1 ;k2 ;k3

a0k1

J1ða0k1
Þ

a2
1k2

ða2
0k1
� a2

1k2
Þ2


 1

ða2
1k2
� a2

0k3
Þ2

Fðt; k0k1
; k1k2

; k0k3
Þ:

Although this triple sum can already be computed numerically, the
Laplace transform summation technique [16,44] allows us to further
simplify the formula. In fact, two of the three sums can be calculated
analytically that yields Eq. (18). This is an exact explicit formula
which is particularly convenient for numerical computations.

In order to investigate the short-time behavior of the function
S2(t), we derive another exact representation for S2(t) by using La-
place transforms:

S2ðtÞ ¼
2
3

t3 � 1
96

L�1 3s2 þ 56sþ 288
s4I0ð

ffiffi
s
p
Þ

	 

ðtÞ þ 1

4
L�1 1

s5=2I1ð
ffiffi
s
p
Þ

	 

ðtÞ

þ t
12

L�1 s� 4
s3I0ð

ffiffi
s
p
Þ

	 

ðtÞ;

ðB:2Þ

where In(z) is the modified Bessel function of the first kind, and L�1

denotes the inverse Laplace transform. In the limit t ? 0, one
derives

S2ðtÞ ¼
2
3

t3 � e�1=ð4tÞt2

4
ð1þ OðtÞÞ:

Since the function e�1/(4t) decreases extremely fast as t ? 0, the first
term 2t3/3 representing the second moment for unrestricted diffu-
sion, is a very accurate approximation of S2(t) in this limit.

Note that the survival probability S0(t) can also be represented
through the inverse Laplace transform as

S0ðtÞ ¼ 1�L�1 1ffiffi
s
p

I0ð
ffiffi
s
p
Þ

	 

ðtÞ:
B.2. The unit sphere

For the unit sphere, Eq. (A.19) yields

eUnk ¼ dn;0
2
ffiffiffiffiffiffiffi
2p
p

a0k
:

Combining with Eq. (A.20) for Unk, one gets Eq. (5) for the survival
probability S0(t), and

S2ðtÞ ¼
64
3

X
k1 ;k2 ;k3

ð�1Þk1
k0k1

k1k2

ðk0k1 � k1k2 Þ
2


 1

ðk1k2 � k0k3 Þ
2 Fðt; k0k1 ; k1k2 ; k0k3 Þ:

As earlier, the Laplace transform summation technique [16,44] al-
lows us to compute two of the three sums analytically that yields
the exact formula (19). Another exact representation for S2(t) can
be derived by Laplace transforms:

S2ðtÞ ¼
2t3

3
� 1

24
L�1 s2 þ17sþ174

2s7=2 sinh
ffiffi
s
p

	 

ðtÞ

þ 5
24

L�1 1
s3=2ðsinh

ffiffi
s
p
�

ffiffi
s
p

cosh
ffiffi
s
p
Þ

	 

ðtÞþ t

24
L�1 4s�3

s5=2 sinh
ffiffi
s
p

	 

ðtÞ:

In the limit t ? 0, one finds

S2ðtÞ ¼
2
3

t3 � e�1=ð4tÞt3=2ffiffiffiffi
p
p 1þ OðtÞð Þ:

As previously, the second term decays extremely fast as t ? 0 so
that 2t3/3 is a very accurate approximation of S2(t) in this limit.
Note that the survival probability S0(t) can also be represented
through the inverse Laplace transform

S0ðtÞ ¼ 1�L�1 1ffiffi
s
p

sinh
ffiffi
s
p

	 

ðtÞ:

Its inversion can be performed explicitly yielding another exact
representation

S0ðtÞ ¼ 1� 2ffiffiffiffi
p
p ffiffi

t
p
X1
k¼1

e�ð2k�1Þ2=ð4tÞ:

This formula is complementary to Eq. (5).

Appendix C. Reflection step

The length of reflection jumps is a limiting factor of the algo-
rithm. Once the reflected Brownian motion reached the boundary,
it would repeatedly return to the boundary for a while. The algo-
rithm would therefore produce many tiny jumps that would signif-
icantly slow down the simulation. It is therefore important to
‘‘release’’ a particle as far as possible from the boundary. If the
boundary is (almost) flat, one could draw a half-circle (half-sphere)
around the current boundary point and make a large jump to a uni-
formly chosen point on this half-circle. The ‘‘only’’ question is how
to compute the phase accumulated during this jump.

Although the spectral approach is applicable in this case, there
is no explicit formula for the elements of the matrix B for a half-
disk (or half-sphere). More importantly, if one tried to proceed
the computation of Appendix A, the mean dephasing Ef/g would
not be proportional to cosh (as it was for a linear gradient in a
sphere or a disk), but it would be represented as a series containing
infinitely many terms cos nh with complicated time-dependent
coefficients. Such a numerical computation, though still feasible,
would be too time-consuming.

In order to overcome this problem, we propose to average the
mean dephasing over all arrival points on the half-circle (half-
sphere). This means that, whatever the randomly chosen arrival
point is, the average dephasing during the jump is added. In con-
trast to the whole disk, for which the average dephasing was zero
(due to the symmetry), the contribution for the half-disk is non-
trivial. Since the number of reflections from the boundary is typi-
cally much smaller than the number of ‘‘ordinary’’ jumps, this
approximation should not degrade the accuracy.

C.1. Perpendicular gradient direction

First, we consider the case when the applied gradient is perpen-
dicular to the base of the half-disk. The dephasing in the upper
half-disk with a linear gradient B(r) = y is equivalent to the dephas-
ing in the whole disk with the magnetic field eBðrÞ ¼ jyj. The above
formalism can be applied if the usual matrix B is replaced by

eBm;m0 ¼
Z

X
dr u�mðrÞjyj um0 ðrÞ:

The averaging over all arrival points modifies the vector eU:

eUnk ¼ �
D
S

Z
@X

dr
@unkðrÞ
@n

;

where S is the surface area of the domain. We find

eUnk ¼ dn;0
Da0kffiffiffiffi

p
p ðd ¼ 2Þ;

eUnk ¼ dn;0
Da0kffiffiffiffiffiffiffi

2p
p ðd ¼ 3Þ:

The whole point of averaging over the arrival points was to get the
Kronecker symbol dn,0 which reduces the summation over n in Eq.
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(A.13) for Ink and eliminates the dependence on cosnh. Note that the
vector U representing the starting from the origin remains
unchanged.

In the three-dimensional case, we obtain

Ink ¼
dn;0

2p
X
k0–k

eB0k;0k0

k0k0 � k0k

a0k0

j1ða0kÞ
þ a0k

j1ða0k0 Þ

� �
:

where

eB0k;0k0 ¼
Z 1

0
drr3 j0ða0krÞ

j00ða0kÞ
j0ða0k0 rÞ
j00ða0k0 Þ

:

Using a0k = p(k + 1), j0(x) = sin(x)/x and j1(x) = sin(x)/x2 � cos(x)/x,
one has

eB0k;0k0 ¼
2

ðk0k � k0k0 Þ
2 a0ka0k0 �

1
j1ða0kÞj1ða0k0 Þ

	 

for k – k0, and eB0k;0k ¼ 1=4. A direct computation yields Ink = 0, so
that

eU3ðtÞ � Ef~/g ¼ t
P1

k¼0U0k
eB0k;0k

eU0ke�k0ktP1
k¼0U0k

eU0ke�k0kt
¼ t

4
:

This astonishingly simple result for the half-sphere relies on the fact
that eB0k;0k ¼ 1=4 is independent of k and factored out from the sum
in the numerator.

This is not true for the half-disk for which

Ink ¼
dn;0

p
X
k0–k

eB0k;0k0

k0k0 � k0k

a0k0

J1ða0kÞ
þ a0k

J1ða0k0 Þ

� �
;

where

eB0k;0k0 ¼
Z 1

0
drr2 J0ða0krÞ

J00ða0kÞ
J0ða0k0 rÞ
J00ða0k0 Þ

:

The integral has to be computed numerically. We find that eB0k;0k is
not a constant any more, but it approaches a constant as k increases.
The computation of the mean dephasing Ef~/g is therefore more
complicated, although it can still be performed numerically accord-
ing to

eU2ðtÞ ¼
P1

k¼0 pI0k þ t a0k
J1ða0kÞ

eB0k;0k

� �
e�a2

0k
tP1

k¼0
a0k

J1ða0kÞ
e�a2

0k
t

:

Denoting

ið1Þk ¼ pI0k;

ið2Þk ¼
a0k

J1ða0kÞ
1
4
� eB0k;0k

� �
; ðC:1Þ

one gets Eq. (21). The coefficients I0k and eB0k;0k, as well as the func-
tion eU2ðtÞ itself, have to be computed only once, while their tabu-
lated values can be loaded before starting Monte Carlo simulations.

C.2. Arbitrary orientation

In general, the orientation of the half-disk (or half-sphere) is not
parallel to the applied gradient. In this case, the dephasing along any
gradient direction is decomposed into two contributions: the
dephasing /k = Ud(t) in the plane which is parallel to the base of
the half-disk (Appendix A), and the dephasing /? ¼ eUdðtÞ which
was just computed. It is crucial that Brownian motions in parallel
and perpendicular directions are independent, although they will
be stopped at the same time when the particle exits from the sphere.

Let n be the normal vector determining the orientation of the
half-disk, and r is the unit vector pointing towards the arrival (exit)
point (Fig. 3). The normalized projection of r onto the base of the
half-disk is

nr ¼
r� nðr � nÞ
jr� nðr � nÞj :

Projections of the ‘‘dephasing vector’’ f = /\n + /knr onto the coor-
dinate axes, (f � ei), yield the contributions to each phase counter
according to Eq. (20).

Appendix D. Second moment of the total dephasing

We briefly recall the computation of the second moment of the
total dephasing for the FID. Following [16], one can write

Ef/2=2g ¼
X

m

B2
0;m

Z 1

0
dt1

Z 1

t1

dt2e�pðt2�t1Þkm

¼ 1
p

f�1 �
1
p2 f�2 þ

1
p2

X
m

B2
0;mk�2

m e�pkm ; ðD:1Þ

where p = Dt/L2 is the dimensionless diffusion coefficient, and

f�k ¼
X

m

B2
0;mk�k

m ðk ¼ 1;2;3; . . .Þ:

For slab, cylinder and sphere with reflecting boundary (Neumann
boundary condition), the matrix elements B0;m and the eigenvalues
km are given in [16]. In particular, one finds

Ef/2=2g ¼ 1
120 p�1 � 17

20160 p�2 þ p�2 8
p4

P1
k¼0

e�pp2ð2kþ1Þ2

ð2kþ1Þ4
ðd ¼ 1Þ;

Ef/2=2g ¼ 7
96 p�1 � 11

512 p�2 þ 2p�2 P1
k¼0

e�pk1k

k3
1kðk1k�1Þ ðd ¼ 2Þ;

Ef/2=2g ¼ 8
175 p�1 � 83

7875 p�2 þ 2p�2 P1
k¼0

e�pk1k

k3
1kðk1k�2Þ ðd ¼ 3Þ:

ðD:2Þ

These exact formulas were used for computing the second moment
shown in Table 1.
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